Population characteristics of Akodon montensis (Sigmodontinae) in response to habitat degradation and food availability

Julieta P. Sánchez-Martínez, Robert D. Owen

Resumen


Small mammal populations can be affected by habitat degradation, causing changes in their abundance, density and movement. Akodon montensis, a persistent host for Orthohantavirus, is a common rodent species in primary and secondary forest habitats and is considered a generalist species. This paper analyzes how habitat degradation and resource availability affect the population characteristics of the species. Six plots were classified into three levels of degradation, with sampling conducted in June and November 2015. After the June sampling, three plots were selected for the increase of food resources for three months, to assess how this factor affects the population. Abundance was estimated with the capture-mark-recapture method and density was estimated by dividing abundance by the effective sampling area. Home range was calculated using the Minimum Convex Polygon method, and the Maximum Distance Traveled as the longest average movement between two sampling stations where an individual was encountered. More degraded habitats supported lower average density and abundance of A. montensis compared to less degraded habitats. Increasing food availability led to increases in abundance in the more degraded habitats and decreases in the least degraded. Changes in home range were most evident, decreasing in the least degraded plots after the increase in resources. The sex ratio did not differ from equity in any plot, nor with respect to any of the factors studied. Population characteristics of the species are determined by several factors, including habitat quality and food distribution and abundance. If changes occur in these factors (either artificially or naturally) then movement, abundance and population density are affected in response to such changes. Although some results were not statistically significant, an apparent interaction was observed between habitat quality and resource availability, thereby influencing the abundance and density of A. montensis.

 


Palabras clave


abundance; habitat quality; home range; maximum distance moved; resource augmentation; sex ratio

Texto completo:

PDF

Referencias


Barreto Cáceres, M. B., y R. D. Owen. 2019. Relación de los pequeños mamíferos terrestres (Rodentia y Didelphimorphia) con la estructura de la vegetación en el Bosque Atlántico Interior – un análisis multivariado. Therya 10:359-369.

Batzli, G. O. 1992. Dynamics of small mammal populations: a review. Pp. 831-850 en Wildlife 2001: populations. (McCullough, D. R., y R. H. Barrett, eds). Springer. Países Bajos.

Calenge, C. 2011. Home Range Estimation in R: The AdehabitatHR Package. Office national de la classe et de la faune sauvage. Saint Benoist, Francia.

Cavia, R., I. E. Gómez Villafañe, E. A. Cittadino, D. N. Bilenca, M. H. Miño, y M. Busch. 2005. The effect of cereal harvest on abundance and spatial distribution of Akodon azarae (Rodentia, Muridae) in Central Argentina. Agriculture Ecosystems and Environment 107:95-99.

Cebollada-Pütz, C., M. Basso, E. Ruiz de los Llanos, y M. Kufner. 2012. La fauna chaqueña de Córdoba (Argentina) afectada por la transformación agrícola. Ecología Aplicada 11:77-87.

Corbalán, V. E., y R. A. Ojeda. 2005. Áreas de acción en un ensamble de roedores del desierto del Monte (Mendoza, Argentina). Mastozoología Neotropical 12:145-152.

D’Elía, G., y U. F. J. Pardiñas. 2015. Tribe Akodontini. Pp. 140-279 en Mammals of South America, Vol. 2, Rodents (Patton, J. L., U. F. J. Pardiñas y G. D’Elía, eds.). The University of Chicago Press. Chicago, EE.UU.

Dearing, M. D., y L. Dizney. 2010. Ecology of hantavirus in a changing world. Annals of the New York Academy of Sciences 1195:99-112.

Desy, E. A., y G. O. Batzli. 1989. Effects of food availability and predation on prairie vole demography: a field experiment. Ecology 70:411-421.

Desy, E. A., G. O. Batzli, y J. Liu. 1990. Effects of food and predation on behaviour of prairie voles: a field experiment. Oikos 58:159-168.

Eastwood, G., J. V. Camp, Y. K. Chu, A. M. Sawyer, R. D. Owen, X. Cao, M. K. Taylor, L. Valdivieso-Torres, R. D. Sage, A. Yu, D. G. Goodin, V. J. Martinez Bruyn, R. C. McAllister, L. Rodriguez, E. P. William, and C. B. Jonsson. 2018. Habitat, species richness and hantaviruses of sigmodontine rodents within the Interior Atlantic Forest, Paraguay. PLoS One 13(8):30201307.

Escudero, P., S. Ivana, J. Polop, y M. Provensal. 2014. Environmental variables and reproductive activity in small rodents of pampean agroecosystems. Mammalia 78:23-33.

Fischer, C., y B. Schröder. 2014. Predicting spatial and temporal habitat use of rodents in a highly intensive agricultural area. Agriculture, Ecosystems & Environment 189:145-153.

FMB/BM. 2005. Reserva Natural del Bosque Mbaracayú. Plan de Manejo 2005-2010. Asunción – Paraguay: Fundación Moisés Bertoni para la Conservación de la Naturaleza (FMB), Banco Mundial (BM). Asunción, Paraguay.

Fraschina, J. 2011. Efectos de cambios en el uso de la tierra sobre ensambles de roedores en agroecosistemas pampeanos. Tesis Doctoral. Universidad de Buenos Aires, Buenos Aires, Argentina.

Fraschina, J., V. A. Leon, y M. Busch. 2012. Long-term variations in rodent abundance in a rural landscape of the Pampas, Argentina. Ecological Research 27:191-202.

García-Estrada, C., Y. A. Peña-Sánchez, y H. Colín-Martínez. 2015. Diversidad de mamíferos pequeños en dos sitios con diferente grado de alteración en la Sierra Sur, Oaxaca, México. Revista Mexicana de Biodiversidad 86:1014-1023.

Gentile, R., P. S. D’Andrea, y R. Cerqueira. 1997. Home ranges of Philander frenata and Akodon cursor in a Brazilian restinga (coastal shrubland). Mastozoología Neotropical 4:105-112.

Gómez-Villafañe, I. E., E. Muschetto, y M. Busch. 2008. Movements of Norway rats (Rattus norvegicus) in two poultry farms, Exaltación de la Cruz, Buenos Aires, Argentina. Mastozoología Neotropical 15:203-208.

González-Romero, A., L. Hernández, J. W. Laundré, E. Aragón, y J. López-Portillo. 2005. Monitoreo de dos comunidades de roedores en la reserva de la biosfera Mapimí, Durango, México. Pp 15-26 en Contribuciones Mastozoológicas en Homenaje a Bernardo Villa (V. Sánchez-Cordero y R. A. Medellín eds.). Instituto de Biología and Instituto de Ecología, Universidad Nacional Autónoma de México. Ciudad de México, México.

Goodin, D. G., D. E. Koch, R. D. Owen, Y. K. Chu, J. M. S. Hutchinson, y C. B. Jonsson. 2006. Land cover associated with hantavirus presence in Paraguay. Global Ecology and Biogeography 15:519-527.

Goodin, D. G., R. Paige, R. D. Owen, K. Ghimire, D. E. Koch, Y-K. Chu, y C. B. Jonsson. 2009. Microhabitat characteristics of Akodon montensis, a reservoir for hantavirus, and hantaviral seroprevalence in an Atlantic forest site in eastern Paraguay. Journal of Vector Ecology 34:104-113.

Hernández-Betancourt, S. F., R. López-Wilchis, J. A. Cimé-Pool, y S. Medina-Peralta. 2003. Área de actividad, movimiento y organización social de Heteromys gaumeri Allen y Chapman, 1897 (Rodentia: Heteromyidae) en una selva mediana subcaducifolia de Yucatán, México. Acta Zoológica Mexicana 90:77-91.

Infostat. 2008. InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba. Córdoba, Argentina.

Klemann, N., y H. J. Pelz. 2006. The feeding pattern of the Norway rat (Rattus norvegicus) in two differently structured habitats on a farm. Applied Animal Behaviour Science 97:293-302.

Maroli, M. 2014. Determinación de los movimientos diarios y selección de microhábitats de pequeños roedores en la Reserva Natural Otamendi, Buenos Aires. Mastozoología Neotropical 2:186-187.

Melo, G. L., B. Miotto, B. Peres, y N. C. Cáceres. 2013. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic Forest. Anais da Academia Brasileira de Ciências 85:727-736.

Muratore, M., M. de la Reta, S. Perna, A. Oggero, S. Ferrero, J. J. Polop, y M. C. Provensal. 2019. Microhabitat use by sigmodontine rodents in crop-field borders of pampean agroecosystems. Mastozoología Neotropical 26:183-189.

National Research Council of the National Academies (NRC). 2011. Guide for the care and use of laboratory animals. The National Academies Press. Washington, EE.UU.

Oliveira, R. C., R. Gentile, A. Guterres, J. Fernandes, B. R. Teixeira, V. Vaz, F. Valdez, L. Vicente, S. Da Costa-Neto, C. Bonvicino, P. D’Andrea, y E. S. Lemos. 2014. Ecological study of hantavirus infection in wild rodents in an endemic area in Brazil. Acta Tropica 131:1-10.

Owen, R. D., H. Sánchez, L. Rodriguez, y C. B. Jonsson. 2018. Composition and characteristics of a diverse didelphid community (Mammalia: Didelphimorphia) in sub-tropical South America. Occasional Papers, Museum of Texas Tech University 358:1-18.

Owen, R. D., J. V. Camp, y C. B. Jonsson. 2019a. Sigmodontine community and species responses to El Niño and precipitation in different levels of forest degradation. Therya 10:255-265.

Owen, R. D., J. V. Camp, R. Sage, L. Rodríguez, V. J. Martínez Bruyn, R. C. McAllister, y C. B. Jonsson. 2019b. Sympatry and habitat associations of sigmodontine rodents in a neotropical forest-savanna interface. Mammalia 84:227–238.

Pires A. S., F. A. S. Fernandez, y D. Defreitas. 1999. Patterns of space use by Micoureus demerarae (Marsupialia: Didelphidae) in a fragment of Atlantic forest in Brazil. Mastozoología Neotropical 6:39-45.

Pocock M. J. O, J. B. Searle, y P. C. L. White. 2004. Adaptations of animals to commensal habitats: population dynamics of house mice Mus musculus domesticus on farms. Journal of Animal Ecology 73:878-888.

Prado, A. F. 2015. Abundância de roedores reservatorios de hantavirus no bioma de Mata Atlántica: efeitos da estructura da paisagem e da escala de análise. Tesis de Maestría, Universidade de São Paulo, Brasil.

Priotto J. W., y A. R. Steinmann. 1999. Factors affecting home range size and overlap in Akodon azarae (Muridae: Sigmodontinae) in natural pasture of Argentina. Acta Theriologica 44:37-44.

Prist, P. R. 2016. O risco de transmissão da Hantavirose em função do clima e da estructura da paisagem. Tesis de Doctorado, Universidade de São Paulo, Brasil.

Püttker, T., R. Pardini, Y. Meyer-Lucht, y S. Sommer. 2008. Responses of five small mammal species to micro-scale variations in vegetation structure in secondary Atlantic Forest remnants, Brazil. BMC Ecology 8:1-10.

Ribble, D. O., y S. Stanley. 1998. Home ranges and social organization of syntopic Peromyscus boylii and P. truei. Journal of Mammalogy 79:932-941.

Rohlf, F. J. 2018. NTSYSpc: Numerical Taxonomy System. ver. 2.21c. Applied Biostatistics, Inc. New York, EE.UU.

Rubio, A., R. Ávila-Flores, y G. Suzán. 2014. Responses of small mammals to habitat fragmentation: Epidemiological considerations for rodent-borne Hantaviruses in the Americas. Ecohealth 11:526-533.

Santos-Filho, M., C. A. Peres, D. J. da Silva, y T. M. Sanaiotti. 2012. Habitat patch and matrix effects on small-mammal persistence in Amazonian forest fragments. Biodiversity and Conservation 21:1127-1147.

Schnell, G. D., R. D. Owen, R. K. Chesser, y P. G. Risser. 1980. Populations of small mammals in north-central Oklahoma. The Southwestern Naturalist 25:67-80.

Sikes, R. S., W. H. Gannon y the Animal Care and Use Committee of the American Society of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy 92:235–253.

Suzán, G., A. Armién, J. N. Mills, E. Marcé, G. Ceballos, M. Ávila, J. Salazar-Bravo, L. Ruedas, B. Armién, y T. L. Yates. 2008. Epidemiological considerations of rodent community composition in fragmented landscapes in Panama. Journal of Mammalogy 89:684-690.

Taylor K. D., y R. J. Quy. 1978. Long distance movements of a common rat (Rattus norvegicus) revealed by radio-tracking. Mammalia 42:63-71.

Vergara, P. M., A. Rivera-Hutinel, A. Farías, H. Cofré, H. Samaniego, y I. J. Hahn. 2014. ¿Cómo responden los animales del bosque a las perturbaciones antropogénicas? Pp 235-254 en Ecología Forestal: Bases para el Manejo Sustentable Vol. 8 (Donoso, C., M. E. González, A. Lara, y P. Donoso, eds.). Marisa Cuneo Ediciones, Chile. Ediciones Universidad Austral de Chile. Valdivia, Chile.

White, G. C. 2014. Program MARK. Warner College of Natural Resources at Colorado State University. Boulder, EE.UU.


Enlaces refback

  • No hay ningún enlace refback.


FACTOR DE IMPACTO 2019 (SCOPUS): 1.1


THERYA es publicada por la Asociación Mexicana de Mastozoología A. C.  Se distribuye bajo una Licencia de Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

DERECHOS DE AUTOR Y DERECHOS CONEXOS, THERYA es una publicación digital cuatrimestral editada por la Asociación Mexicana de Mastozoología A. C.  Hacienda Vista Hermosa 107, Colonia Villa Quietud, Coyoacan 04960.  Distrito Federal, México.  Telefono (612) 123-8486, www.mastozoologiamexicana.org.  Editor responsable: Dr. Sergio Ticul Álvarez Castañeda (therya@cibnor.mx).  Reservas de Derechos al Uso Exclusivo No. 04-2009-112812171700-102, ISSN: 2007-3364 ambos otorgados por el Instituto Nacional de Derechos de Autor.  Responsable de la última actualización de este número, Unidad de informática de la Asociación Mexicana de Mastozoología A. C.  Dr. Sergio Ticul Álvarez Castañeda.  Instituto Politécnico Nacional 195.  La Paz, Baja California Sur, C. P. 23096.  Tel 612 123 8486.