Diseño Mecánico Ágil: Nueva propuesta metodológica enfocada a proyectos de desarrollo tecnológico

Jorge Armando Gutiérrez Bravo, Isaac Hernández Arriaga, Jose Guadalupe Octavio Cabrera Lazarini

Resumen


En la actualidad, todos los productos están sometidos a un proceso de evolución continuo, generando que las empresas busquen nuevos métodos que se adapten a la dinámica de dichos cambios en los productos. Metodologías ágiles han presentado alternativas para atender esta necesidad. Sin embargo, aún no se ha resuelto la contradicción de obtener productos ágiles y técnicamente fundamentados. Este artículo propone un nuevo método para atender dicha contradicción, basado en el acoplamiento de los principios ágiles con métodos, técnicas y herramientas del diseño mecánico, logrando a través de las herramientas virtuales tanto del modelado 3D como la realidad aumentada, realizar la evaluación del producto desde la etapa de diseño, generando incrementos en la configuración del producto en cada iteración sin la necesidad de interactuar con un producto físico. El principio es encontrar una solución funcional temprana e intentar mejorarla, en lugar de abordar el problema y posponer la solución como los métodos tradicionales del diseño mecánico lo establecen. Finalmente, se exponen y discuten los resultados relevantes de la aplicación de este método en un proyecto real de la empresa Industrial Automation México.

Palabras clave


Método Ágil; Diseño Mecánico; Proyectos de Desarrollo tecnológico

Texto completo:

PDF

Referencias


Þ. Reynisdottir, «Scrum in Mechanical Product Development, Case Study of a Mechanical Product Development Team using Scrum,» CHALMERS UNIVERSITY OF TECHNOLOGY, Gothenburg, Sweden, 2013.

J. J. M. Also, «Integration of the Scrum methodology in mechatronic product development,» Universitat de Vic Escola Politécnica Superior, España, 2015.

S. Dwyer, «Agile Design Project Methodology for Small Teams Developing Mechatronic Systems,» University of Alberta, Canada, 2017.

K. Adams, «Design Methodologies,» de Non-Functional Requirements in Systems Analysis ans Design, Switzerland, Springer International Publishing, 2015, pp. 15-42.

T. Tomiyama, P. Gu, Jin D. Lutters, Ch. Kind y F. Kimura, «Design methodologies: Industrial and educational applications,» Manufacturing Technology, p. 543–565, 2009.

N. Evbuomwan, S. Sivaloganathan y A. Jebb, «A survey of design philosophies, models, mehods ans systems,» Engineering Design Centre, City University, London, vol. 210, nº 4, pp. 301-320, 1996.

N. Cross, Engineering design methods strategies for product design, Chichester; New York: Wiley, 2000.

H. Takeda, «et al. Modeling Design Processes,» AI Magazine Volume 11 Number 4, p. 37-48, 1990.

S. Finger y J. R. Dixon, «A review of research in mechanical engineering design. part i: descriptive, prescriptive, and computer-based models of design processes,» Research in Engineering Design vol. 1, nº 1, p. 51-67, 1989.

L. March, «In Developments in design Methodology,» de The Logic of Design, London, (John Wiley, 1984, pp. 265-276.

E. Mattchet y A. H. Briggs, «Practical design based on method (Fundamental design method),» de The Design Method, London, S. A. Gregory, 1966, pp. 183-199.

J. Gero y I. Hybs, «An evolutionary process model of design,» Design Studies, pp. 273-290, 1992.

J. C. Jones y D. G. Thornley, «Conference on Design Methods,» de A Method of Systematic Design, London, September 1962.

M. Asimow, Introduction to Design, Engle-wood Cliffs New Jersey: Prentice-Hall, 1962.

G. Pahl y W. Beitz, Engineering Design, Third Edition, London: Springer, 2007. [16] VID, VDI Guideline, Berlin: The Association of German Engineers (VDI), 1987.

R. D. Watts, The design method, Butterworth, London: S. A. Gregory, 1966, pp. 85-95. [18] D. L. Marples, The decisions of engineering design, London: The Institution of Engineering Designers, 1960.

L. B. Archer, Development in Design Methodology, John Wiley, London, pp. 57-82: N. Cross, 1984, pp. 57-82.

E. V. Krick, Engineering and engineering design, 2nd Edition, New York: John Wiley, 1969. [21] V. Hubka, «Design for quality and design methodology,» Journal of Engineering Design, pp. 3(1), 5-15, 1992.

M. J. French, Conceptual design, 3rd Edition, London: Springer, 1999. [23] A. J. Harris, «Can design be taught,» Proc. Instn Civ. Engrs, pp. Part 1, No. 68, 409-416, August August, 1980.

S. Pugh, Total design-integrated methods for successful product engineering, 1st edition, England: Addison, Wesley, 1990. [25] BS-7000, Management of Design, London: British Standard Institution, 2015.

P. Suh, The Principles of Design, Ed 1, New York, USA: Oxford University Press, 1990.

G. Taguchi, Introduction to quality engineering : designing quality into products and processes, Tokyo: Asian productivity organization, 1990.

D. G. Ullman, The Mechanical Design Process, New York, US: McGraw-Hill, 2010.

K. T. Ulrich y S. D. Eppinger, Diseño y desarrollo de productos; quinta edición, Pennsylvania, USA: Mc-Graw-Hill, 2012.

V. L.-N. D. C. Johnny Huysentruyt, «A model of cognitive activities in design,» de Conférence Internationale de Modélisation, Optimisation et SIMulation - MOSIM’ 12, Bordeaux - France, 2012.

H. Yoshikawa, «Design Philosophy: The State-ofthe-Art,» Keynote paper, Annals of the CIRP, Vol. 38, p. 2, 1989.

J. S. Gero, «IA and new computational models of design, » de International Association for Bridge and Structural Engineering (IABSE), Beijing, China, Colloquium on Knowledge-based systems in civil engineering, 1993, pp. 25-32.

T. Tomiyama, «A design process model that unifies General Design Theory and Empirical Findings,» Design Engineering Technical Conferences, 1995.

F. C. P. a. M. D. Lhote, «Elargissement de principes de la cybernétique vers I ingénierie et la production,» de INCOM’98, June 1998.

W. Visser, The cognitive artefacts of designing, New Jersey: Lawrence Erlbaum Associates, Inc, 2006.

A. M. e. a. Agogino, «IA/OR computational model for integrating qualitative and quantitative design methods, » de Proceedings of NSF Engineering in Design Conference, Amherst Massachusetts, 1989.

G. E. Neville, «Computational models of design processes,» Design Theory ’88, pp. 82-116, 1988.

J. e. a. Mostow, «A domain-independent model of knowledge-based design,» de Proceedings of the 1988 NSF Grantee Workshop on Design Theory and Methodology. Design Theory, New York, Springer Verlag, 1988, pp. 97-99.

J. R. Dixon, «Iterative redesign and respecification: research on computational models of design processes.,» de Proceedings of the 1988 NSF Grantee Workshop on Design Theory and Methodology. Design theory 88, New York, Srpinger Verlang, 1988, pp. 104-107.

P. A. Fitzhorn, «Engineering design is a computable function,» Artif, Intell, for Enging Des., Analysis and Mfg, pp. 8, 35-44, 1994.

J. Cagan y A. M. Agogino, «Dimensional variable expansion - a formal approach to innovate design,» Res. in Enging Des., pp. 3, 75-85, 1991.

S. R. Kenneth, Essential SCRUM: A Practical Guide to the Most Popular Agile Process, Arbor, Michigan USA: Addison-Wesley, 2013.

D. J. Anderson, Kanban: Successful Evolutionary Change for Your Technology Business, USA: Blue Hole Press, 2010.

A. Reddy, The Scrumban [R]Evolution: Getting the Most Out of Agile, Scrum, and Lean Kanban (Agile Software Development), USA: Addison-Wesley, 2015.

M. Fowler y K. Beck, Planning Extreme Programming, USA: Addison-Wesley, 2000.

A. W. Ulwick, What customers want, USA: McGraw-Hill, 2005.

R. Zultner, J. Terninko y G. H. Mazur, «House of Quality (QFD) Tutorial,» 2010. [En línea]. Available: http:// www.qfdonline.com/qfd-tutorials/house-of-quality-tutorial/. [Último acceso: 15 06 2018].

D. Verduyn, «kanomodel.com,» 17th March 2014. [En línea]. Available: https://www.kanomodel.com/articles/.

S. D. Savransky , Engineering of Creativity: Introduction to Triz Methodology of Inventive Problem, Florida USA: CRC Press, 2000.

M. Tooley, Design Engineering Manual, Surrey, England: Butterworth-Heinemann, 2009.

M. Tichem y T. Storm, «Designer support for product structuring - development of a DFX tool within the design coordination framework,» Computers in Industry 33, pp. 155-163, 1997.

M. A. Anleitner, The Power of Deduction: Failure Modes and Effects Analysis for Design, Wisconsin, USA: ASQ Quality Press, 2010.

J. Y. L. &. G. W. R. &. H. Park, «AR/RP-based tangible interactions for collaborative design,» Int J Adv Manuf Technol 45, p. 649–665, 2009.

S. Ong y J. Huang, «Structure design and analysis with integrated AR-FEA,» CIRP Annals - Manufacturing Technology 66, p. 149–152, 2017.

G. Boothroyd, P. Dewhurst y W. A. Knight, Product Design for Manufacturing and Assembly 3rd Edition, Massachusetts, USA: CRC Press, 2010.

M. Hololens, «Microsoft HoloLens User Guide,» 28 July 2017. [En línea]. Available: https://archive.org/details/ microsoft-hololens/page/n1.

MNX-GT-002-IMNC-2008, Gestion de la Tecnología - Proyectos Tecnologicos - Requisitos, 2008.

M. J. Safoutin, «A methodology for empirical measurement of iteration in engineering, PhD thesis,» University of Washington, Washington US, 2003.

J. S. a. M. M. Gero et al, «A framework for research in design computing,» de ECAADE'97, 1997.

H. Takeda, Tomiyama, T. a. H. y Yoshikawa, «A logical design computable framework for reasoning in design,» In Design Theory and Methodology, DEVol. 42, ASME, 1992.

T. Tomiyama, The Netherlands,: University of Twente, March 1999, pp. 24-26.

T. Tomiyama, «Structurizing Design Knowledge: Design Theory, Design Methodology, and Design Methods, » de In CIRP International Design Seminar, The Netherlands, March 1999.

D. McKenna, The Art of Scrum, Pennsylvania, US: CA Press, 2016.

«SCRUM.ORG,» [En línea]. Available: https://www.scrum.org/resources/what-is-scrum.


Enlaces refback

  • No hay ningún enlace refback.